首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89411篇
  免费   3877篇
  国内免费   4216篇
电工技术   4051篇
技术理论   5篇
综合类   8453篇
化学工业   12866篇
金属工艺   5641篇
机械仪表   3008篇
建筑科学   4387篇
矿业工程   1250篇
能源动力   2744篇
轻工业   6062篇
水利工程   1933篇
石油天然气   4100篇
武器工业   687篇
无线电   6727篇
一般工业技术   14011篇
冶金工业   2477篇
原子能技术   2175篇
自动化技术   16927篇
  2024年   146篇
  2023年   292篇
  2022年   535篇
  2021年   603篇
  2020年   999篇
  2019年   945篇
  2018年   1056篇
  2017年   985篇
  2016年   1506篇
  2015年   2144篇
  2014年   3921篇
  2013年   4687篇
  2012年   3952篇
  2011年   4591篇
  2010年   3853篇
  2009年   5238篇
  2008年   5250篇
  2007年   5600篇
  2006年   5138篇
  2005年   4304篇
  2004年   3718篇
  2003年   3643篇
  2002年   3714篇
  2001年   2767篇
  2000年   3158篇
  1999年   2945篇
  1998年   2486篇
  1997年   2368篇
  1996年   2549篇
  1995年   2650篇
  1994年   2406篇
  1993年   1460篇
  1992年   1488篇
  1991年   1025篇
  1990年   748篇
  1989年   666篇
  1988年   633篇
  1987年   372篇
  1986年   224篇
  1985年   371篇
  1984年   414篇
  1983年   430篇
  1982年   329篇
  1981年   407篇
  1980年   271篇
  1979年   114篇
  1978年   114篇
  1977年   70篇
  1976年   43篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
在简述V.35接口的基础上针对V.35接口速率可变的应用需求提出了一种速率可变的帧结构,该帧结构可支持N×64kb/s(3≤N≤32)速率,从而在V.35接口上实现了多种速率的低速业务传输.  相似文献   
12.
Waveguide configurations of hierarchical system are proposed as new microstructures for composites in absorbing enhancement. Supercritical fluid (SCF) one-pot exfoliation of layered graphite and manganese oxide mixing materials is developed to obtain a hierarchical system, containing graphene nanosheets (GNS) and exfoliated manganese oxides (EMO) in different sizes. Composites with GNS–EMO embedded in epoxy resin matrix are produced for a design of dielectric and magnetic loss integrated absorber. Volume fraction of GNS–EMO in composites is given for an optimal quantity of resin epoxy in fixation and formation. The effect of mixing ratios between electric and magnetic components is provided for the design of dielectric and magnetic loss integrated absorbers. Frequency shifting phenomena are revealed in the component adjusting course. Excluding the offsetting sizes, reflection loss of composites is enhanced as thickness increases. Synergistic effect of electric and magnetic coordinated materials demonstrates the superiority of micro-waveguide structures in GNS–EMO composite absorber.  相似文献   
13.
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.  相似文献   
14.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
15.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
16.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
17.
Surface oxidation and ensuing damage substantially decrease the service life of High Temperature Polymer Matrix Composite (HTPMC) structures. Oxidative degradation behavior of composites is strongly dependent on the coupling between chemical and mechanical responses of the material. In a composite lamina, the onset of damage and subsequent coupled acceleration of both damage and oxidation are controlled by the transverse failure strength of the oxidized regions. The direct measurement of this strength from experimentation is challenging and cumbersome. A model-based methodology for estimating the mean transverse failure strength of the oxidized regions of a unidirectional composite is described in this paper. As the strength of the oxidized region is expected to show a high-degree of spatial variability, the estimated mean is shown to be relatively insensitive to the effect of strength variance. The developed methodology is illustrated with isothermal aging data available for a typical high-temperature composite system.  相似文献   
18.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
19.
The structural changes induced in a CoCrCuFeNi multicomponent nano-crystalline high-entropy alloy (HEA) under fast electron irradiation were investigated by in-situ transmission electron microscopy (TEM) using a high voltage electron microscope (HVEM). A fine-grained face centered cubic (fcc) single phase was obtained in the sputtered specimens. The fcc solid solution showed high phase stability against irradiation over a wide temperature range from 298 to 773 K, and remained as the main constituent phase even when the samples were irradiated up to 40 displacement per atom (dpa). Moreover, the irradiation did not seem to induce grain coarsening. This is the first report on the irradiation damage in 5-component HEA under MeV electron irradiation.  相似文献   
20.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号